Matching Application Access Patterns to Storage Device Characteristics (CMU-PDL-03-109)

نویسندگان

  • Jiri Schindler
  • JIRI SCHINDLER
  • Anastassia Ailamaki
چکیده

Conventional computer systems have insufficient information about storage device performance characteristics. As a consequence, they utilize the available device resources inefficiently, which, in turn, results in poor application performance. This dissertation demonstrates that a few high-level, device-independent hints encapsulating unique storage device characteristics can achieve significant I/O performance gains without breaking the established abstraction of a storage device as a linear address space of fixed-size blocks. A piece of system software (here referred to as storage manager), which translates application requests into individual I/Os, can automatically match application access patterns to the provided characteristics. This results in more efficient utilization of storage devices and thus improved application performance. This dissertation (i) identifies specific features of disk drives, disk arrays, and MEMS-based storage devices not exploited by conventional systems, (ii) quantifies the potential performance gains these features offer, and (iii) demonstrates on three different implementations (FFS file system, database storage manager, and disk array logical volume manager) the benefits to the applications using these storage managers. It describes two specific attributes: the access delay boundaries attribute delineates efficient accesses to storage devices and the parallelism attribute exploits the parallelism inherent to a storage device. The two described performance attributes mesh well with existing storage manager data structures, requiring minimal changes to their code. Most importantly, they simplify the errorprone task of performance tuning. Exposing performance characteristics has the biggest impact on systems with regular access patterns. For example in database systems, when decision support (DSS) and on-line transaction processing (OLTP) workloads run concurrently, DSS experiences a speed up of up to 3×, while OLTP exhibits a 7% speedup. With a single layout taking advantage of access parallelism, a database table can be scanned efficiently in both dimensions. Additionally, scan operations run in time proportional to the amount of query payload; unwanted portions of a table are not touched while scanning at full bandwidth. vi · Matching Application Access Patterns to Storage Device Characteristics

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atropos: A Disk Array Volume Manager for Orchestrated Use of Disks (CMU-PDL-03-101)

The Atropos logical volume manager allows applications to exploit characteristics of its underlying collection of disks. It stripes data in track-sized units and explicitly exposes the boundaries, allowing applications to maximize efficiency for sequential access patterns even when they share the array. Further, it supports efficient diagonal access to blocks on adjacent tracks, allowing applic...

متن کامل

Matching Application Access Patterns to Storage Device Characteristics

Conventional computer systems have insufficient information about storage device performance characteristics. As a consequence, they utilize the available device resources inefficiently, which, in turn, results in poor application performance. This dissertation demonstrates that a few high-level, device-independent hints encapsulating unique storage device characteristics can achieve significan...

متن کامل

MEMS-Based Storage Devices and Standard Disk Interfaces: A Square Peg in a Round Hole? (CMU-PDL-03-102)

MEMS-based storage devices (MEMStores) are significantly different from both disk drives and semiconductor memories. The differences motivate the question of whether they need new abstractions to be utilized by systems, or if existing abstractions will be sufficient. This paper addresses this question by examining the fundamental reasons that the abstraction works for existing devices, and by s...

متن کامل

Lachesis: Robust Database Storage Management Based on Device-specific Performance Characteristics (CMU-CS-03-124)

Database systems work hard to tune I/O performance, but do not always achieve the full performance potential of modern disk systems. Their abstracted view of storage components hides useful device-specific characteristics, such as disk track boundaries and advanced built-in firmware algorithms. This paper presents a new storage manager architecture, called Lachesis, that exploits and adapts to ...

متن کامل

Argon: Performance Insulation for Shared Storage Servers (CMU-PDL-06-106 )

Services that share a storage system should realize the same efficiency, within their share of time, as when they have the system to themselves. The Argon storage server explicitly manages its resources to bound the inefficiency arising from inter-service disk and cache interference in traditional systems. The goal is to provide each service with at least a configured fraction (e.g., 0.9) of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015